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Abstract. In the context of the study of diffusion in disordered media we present an alternative
way to obtain the Terwiel cumulants expansion. Our approach starts from a formal solution of
the master equation (ME) associated with the model of the nearest-neighbour random walk in a
one-dimensional disordered chain. We apply our formalism to the analysis of a finite-effective-
medium-like approximation.

1. Introduction

Diffusion is a determinant process in many phenomena occurring in disordered media. Of
particular interest are the diffusion-controlled reactions which often occur in physical, chemical
or biological systems. As examples of these processes we can mention the chemical reaction
of two components in which one of them is fixed and the other one wanders around until they
meet and react [1]; or, in the field of biology, the absorption of ligand molecules by acceptor
centres located on a cell’s surface [2]. In many systems it is necessary to consider the effect
of disorder on the behaviour of quantities of physical interest [3, 4]. These effects may be
only quantitative modifications that preserve the diffusion or involve a more profound change.
Disorder imposes restrictions on the movement of the particles. When the disorder becomes
strong enough, these restrictions lead to an anomalous behaviour.

In this paper we consider a finite one-dimensional lattice bounded by perfect traps. A
particle is allowed to diffuse on the lattice until it is captured by one of the traps. Disorder is
introduced by assigning to each site of the lattice a transition rate that is a stochastic variable
(site disorder). The transition rateωi gives the jumping probability per unit time from sitei
to any of its nearest neighbours:i ± 1 (symmetric random walk). The random variables{ωi}
are supposed to be mutually independent and with identical density of probabilityρ(ω). The
time that the particle spends on each lattice site before it jumps to any of its neighbouring sites
is a random variable whose average moments are given by

t̄ n = (2ωi)−n n = 1, 2, . . . .

If the density of probabilityρ(ωi) gives finite values for the average〈
1

ω2
i

〉
≡
∫
ρ(ωi)

dωi
ω2
i
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we say that the system has a weak disorder; otherwise the disorder is strong. Some authors
prefer to call ‘strong disorder’ the case where both〈 1

ωi
〉 and〈 1

ω2
i

〉 diverge. A convenient family

of probabilities distributionsρ(ωi) for the random variablesωi is given by

ρα(ω) =
{
(1− α)ω−α ω ∈ [0, 1]

0 otherwise

where the parameterα < 1 characterizes the disorder. Forα < −1 the inverse second moment〈
1

ω2

〉
≡
∫ 1

0

ρα(ω) dω

ω2

is finite and we haveweak disorder. For−1 < α < 1 the second inverse moment diverges
and we have the so-calledstrong disorder.

Among the properties of the system that we are interested in are the asymptotic behaviour
(t →∞) of the averaged survival probability and the statistics of the first-passage time (FPT).
Such average is taken over realizations of the disorder. For weak disorder the system behaves,
for long times, as an homogeneous one with an effective transition rateωeff given by

ωeff =
〈

1

ω

〉−1

while for short times this effective transition rate is

ωeff = 〈ω〉.
The study of particles diffusion in one-dimensional disordered media has attracted the

attention of many authors in the last two decades [5–12]. Since it is not possible, in general, to
exactly solve the associated ME for a given realization of the disorder, several approximated
procedures have been developed to solve anaveraged ME[11]. These techniques have yielded
the long-time behaviour for physically relevant quantities for any kind of disorder. Instead, our
approach starts by writing a formal solution of the ME in Laplace space, for a given realization
of the disorder. Using straightforward algebra we will be able to express the averaged solution
as a series in terms of the known Terwiel cumulants [13]. This scheme allows us to reobtain
several results in a much simpler way.

The outline of the paper is as follows. In section 2 we describe the model and define
the survival probability and the FPT for a homogeneous system; in section 3 we analyse a
disordered system and obtain a formal solution in terms of Terwiel cumulants. The asymptotic
behaviour for systems with weak disorder is also given; in section 4 a finite-effective medium
approximation is obtained from the Terwiel expansion.

2. The FPT statistics

Assuming that the process can be modelled by a particle that makes a random walk on a regular
one-dimensional disordered lattice, to each site of the lattice is assigned a random variableωn
that gives the jump probability per unit time to any of the two nearest neighbours (sitesn + 1
andn− 1). Since the jump probability per unit time is constant the resulting diffusion will be
Markovian. Let us stress that once the random variableωn is chosen, its value is kept fixed,
i.e. we havequencheddisorder in the lattice. The density of the probability distribution forω

is given by the functionρ(ω).
The position of the particle in the chain is governed by the ME

dGij (t)

dt
=

N∑
k=1

HikGkj (t) i, j = 1, . . . , N (2.1)
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whereGij (t) ≡ G(i, t |j, t0 = 0) is the conditional probability that the walker is at sitei at
time t given that it started from sitej at timet0 = 0. N is the number of sites in the lattice
and the matrixH is defined below. In matrix notation the equation (2.1) can be rewritten in
the form

dG

dt
= HG (2.2)

where the matrixH has the general form

H ≡ M�. (2.3)

The matrixM depends on the boundary condition and� is the diagonal matrix

� =


ω1 0 . . 0
0 ω2 0 . 0
. . . . .

. . . . .

0 0 . . ωN

 .
If we assume that the sitesi = 0 andi = N + 1 are absorbing, the matrixM adopts the

form

M =


−2 1 . . 0
1 −2 1 . 0
. . . . .

. . . . .

0 0 . 1 −2

 .
By Laplace transforming equation (2.2) we obtain

−G(0) + zG̃(z) = HG̃(z)
which leads to

G̃(z) = (z−H)−1G(0) = (z−M�)−1G(0)

= (z−M�)−1 (2.4)

with G̃(z) the Laplace transform of the matrixG(t). G(0) is the identity matrix.
The sum

Fj (t) ≡
∑
i

Gij (t) (2.5)

represents the survival probability of the walker at timet , that is, the probability that a walker
that started from sitej at timet0 = 0 is still somewhere on the lattice at timet . The probability
densitygj (t) for FPT is given by

gj (t) = −dFj
dt
.

Thus, the mean value of the FPT for the particle, starting at sitej , is given by

(1)Tj =
∫ ∞

0
gj (t)t dt = −

∫ ∞
0
t
dFj
dt

dt =
∫ ∞

0
Fj (t) dt (2.6)

where we have assumed thattFj (t) ∼ 0 for t → ∞. In terms of the Laplace transform of
Fj (t),

F̃j (z) =
∫ ∞

0
e−ztFj (t) dt =

∑
i

G̃ij (z)



4030 D P Prato et al

the mean value(1)Tj is given by
(1)Tj = F̃j (z = 0).

Similarly, higher moments(k)Tj of the FPT can be obtained from

(k)Tj =
∫ ∞

0
gj (t)t

k dt = (−1)k+1k
dk−1 F̃j (z)

dzk−1
|z=0.

Therefore, the FPT statistics can be obtained from the knowledge of the matrixG̃ij (z) at z
near to zero.

3. The Terwiel cumulants expansion

The values of(k)Tj will depend on the particular set of values taken by the random variable
{ωi} for a given realization of the disorder. Usually we will be interested in an average of
these quantities over realizations of the disorder. This average can be formally carried out by
introducing a projection operatorP which averages over disorder:

PQ ≡ 〈Q〉 ≡
∫

dω1 ρ(ω1)

∫
dω2 ρ(ω2) . . .

∫
dωn ρ(ωn)Q

for any quantityQ. Obviously we have the identity

Q = PQ + (1− P)Q. (3.1)

For the moments(k)Tj we have

〈(k)Tj 〉 = P((k)Tj ) = (−1)k+1kP
dk−1

dzk−1
F̃j (0)|z=0

= (−1)k+1k
dk−1

dzk−1

∑
i

〈G̃〉ij (z)|z=0. (3.2)

Let us now evaluate the average〈G̃ij (z)〉. We start by splitting the transition probabilities
ωn in their average,γ , and random parts,ηn, such that〈ωn〉 = γ (and〈ηn〉 = 0) andωn = γ+ηn.
Thus the matrix� can be written as

� = 0 + η (3.3)

where0 = γ I andη = diag(η1, . . . , ηN). By replacing the decomposition (3.3) in (2.4), and
using the Dyson expansion, it is straightforward to verify the identity

G̃(z) = G̃0(z) + G̃0(z)MηG̃(z) (3.4)

with G̃0(z) ≡ (z − M0)−1. Because the matrix̃G0 does not depend on the disorder, the
average of the matrix̃G can be written as follows:

PG̃ = G̃0 + G̃0PMηG̃ = G̃0 + G̃0PMη[PG̃ + (1− P)G̃] (3.5)

where we have used the identity (3.1). Furthermore

(1− P)G̃ = G̃0(1− P)MηG̃ = G̃0(1− P)Mη[PG̃ + (1− P)G̃]. (3.6)

By iterating (3.6) and using this result in (3.5) we get

PG̃ = G̃0 + JP{1 +ηJ (1− P) + ηJ (1− P)ηJ (1− P) + . . .}ηPG̃ (3.7)

with J ≡ G̃0M. In this way we arrive at a formal equation for〈G̃〉

〈G̃〉 = G̃0 + J

〈
1

1− ηJ (1− P)η
〉
〈G̃〉. (3.8)
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The terms involved in this expansion of〈[1− ηJ (1− P)]−1η〉 are known as the Terwiel
cumulants [13]. An expansion in terms of the Terwiel cumulants has been used to write an
approximated ME [11], instead of making the expansion directly from the formal solution as
is done here. The expressions obtained in that form are rather complex.

The expression (3.8) allows us to write〈G̃〉 down in terms ofG̃0:

〈G̃〉 =
{

1− J
〈

1

1− ηJ (1− P)η
〉}−1

G̃0. (3.9)

Expanding〈G̃ij (z)〉 aroundz = 0,

〈G̃ij (z)〉 =
∞∑
k=0

A
(k)
ij z

k

it is easy to verify the identity:

〈(k)Tj 〉 = (−1)k+1k!
N∑
i=1

A
(k−1)
ij . (3.10)

Thus, in order to evaluate the average of the moments(k)Tj we need the coefficientsA(k)ij . By

replacing the expansions ofG̃0 andJ nearz = 0

G̃0 = −M
−1

0
+
M−2

02
z + · · ·

J ≡ G̃0M = − 1

0
+
M−1

02
z + · · ·

in the equation (3.9) for〈G̃〉, we obtain for the coefficientsA(0)ij andA(1)ij the values:

A
(0)
ij = −

〈
1

ωi

〉
M−1
ij

A
(1)
ij =

∑
l

〈
1

ωi
M−1
il

1

ωl

〉
M−1
lj

=
〈

1

ω

〉2

M−2
ij +

(〈
1

ω2

〉
−
〈

1

ω

〉2
)
M−1
ii M

−1
ij

(3.11)

where we have used the fact that〈 1
ωi

1
ωj
〉 = 〈 1

ω
〉2 if i 6= j due to the independence of the

variablesωi andωj .
The expression forA(0)ij shows that, at long times, the system behaves as a homogeneous

one with an effective transition rateωeff given by

ωeff ≡
〈

1

ω

〉−1

.

The coefficient of the linear term inz is related to the fluctuation of the random variable1
ωi

.
In the case of strong disorder the results just obtained are no longer valid. In particular,

as follows from equation (3.11), the moments of the FPT diverge. It is of interest to study
the form that these divergencies take place. A way to perform that study is to evaluate the
magnitudes involved in the frame of a finite effective approximation scheme. Therefore, in
the next section we present, from the Terwiel expansion obtained previously, an effective-
medium-like approximation.
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4. Finite-effective-medium-like approximation from the Terwiel expansion

In general it is not easy to evaluate〈G̃ij (z)〉 for disordered systems with an arbitrary value of
N . However, there are various approximation methods. Among these methods is the finite-
effective-medium approximation which gives the correct result for small and large values of
the parameterz [6–11]. This approximation can be obtained in the following way: consider
a finite one-dimensional lattice with jumping probability between nearest neighbour equal
to 0 in every site except in the sitel where the jumping probability isω (single impurity
problem at sitel). In this approximation one requires that the average over the values ofω

of the propagator̃G(i)(z, 0, ω, l) associated with this single impurity problem be equal to the
propagatorG̃0(z, 0) corresponding to an homogeneous chain with jumping probability equal
to 0 in every position in the chain. Because the value of0 resulting from this requirement
depends on the positionl and on the Laplace parameterz, it will be denoted by0l(z). Hence∫

G̃
(i)
jk (z, 0l, ω)ρ(ω)dω = G̃0

jk(z, 0l). (4.1)

The probability densityρ(ω) used in the last equation is the same as the one defined for the
disordered system. It can be shown that the value0l must be independent of the indicesjk of
the matrix element used to write equation (4.1). The propagatorG̃(i) is given by

G̃(i)(z, 0l, ω) = (z−M�)−1 ≡ (z−M0l −M1)−1

where1 is a matrix with zero entries except for the elementll, which is equal to1l = ω−0l(z).
It is straightforward to verify the identity

G̃(i) = G̃0 +

(
G̃0M

1− Jll1l

)
G̃0.

Replacing this expression in equation (4.1) we obtain∫
1lρ(ω) dω

1−1l(G̃0M)ll
= 0 (4.2)

or equivalently∫
ρ(ω)dω

1−1lJll
= 1. (4.3)

This equation gives us the values of0l(z). In figure 1 we show the values of0l as a function
of z, for l at the beginning and at the middle of the chain, for weak disorder and for a particular
case of strong disorder.

Equation (4.3) can be obtained as an approximated solution of our exact formal expression
given in equation ( 3.8). In fact this equation can be rewritten in

〈G̃〉 = G̃0 + (〈Jη〉 + 〈Jη(1− P)Jη〉 + 〈Jη(1− P)Jη(1− P)Jη〉 + · · ·)〈G̃〉. (4.4)

Sinceη is already diagonal, if we neglect off-diagonal of the matrixJ , i.e. if we takeJlj ∼ δlj Jll ,
equation (4.4) leads us to

〈G̃lj 〉 ∼ G̃0
lj + (〈Jllηl〉 + 〈Jllηl(1− P)Jllηl〉

+〈Jllηl(1− P)Jllηl(1− P)Jllηl〉 + · · ·)〈G̃lj 〉. (4.5)

For a fixed value of the indexl the expression inside the bracket can be arranged in the
form 〈

Jllηl

1− Jllηl

〉
1

1 + 〈 Jllηl
1−Jllηl 〉

. (4.6)
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Figure 1. Graphs of the effective hopping transition0(z, l) for l = 1 andl = 15 for a lattice with
N = 30 and for weak disorder. The inset shows the same function for strong disorder with the
parameter that characterizes the disorderα = 0.

Hence the requirement〈G̃lj 〉 = G̃0
lj leads to the condition〈

Jllηl

1− Jllηl

〉
= 0 (4.7)

or equivalently〈
1

1− Jllηl

〉
= 1. (4.8)

This equation coincides with equation (4.3) that gives the value of the jumping probability
0l in finite-effective-media-like approximation when the impurity is at sitel. Note that with
this value of0l we will have that, in general,〈G̃rk〉 6= G̃0

rk for r 6= l.
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